
Week 1 - Friday



 What did we talk about last time?
 Fixed width types
 Systems
 Course themes
 System architectures











 System architectures are models of systems that describe:
 Relationships between entities in the system
 Ways the entities communicate

 Different architectural styles have pros and cons
 Using a certain style can have big impacts on system performance
 Common styles:
 Client/server
 Peer-to-peer (P2P) 
 Layered
 Pipe-and-filter
 Event-driven
 Hybrid



 This book considers client/server architectures 
from the perspective of a many clients 
connecting to a single server
 If you recall, the Software Engineering book 

describes client/server as a system with many 
servers, each of which offer a single service

 How does a client know how to reach the server?
 Uniform resource identifier (URI) is a common way: 

www.goats.net/image.jpg
 Client/server architectures depend on protocols

to define how clients can request services and 
understand the response
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ADVANTAGES

 Updates are simple, because only the 
server needs to be updated

 Only the server needs to be checked 
for security problems or data 
corruption

DISADVANTAGES

 Single point of failure

 To reduce the single point of failure problem, it's common to have multiple servers 
that offer the same services or files

 To work, these servers must coordinate with each other when one is updated



 If more and more servers are used, the architecture 
begins to look like a P2P architecture
 BitTorrent
 DNS

 In P2P, there is usually no distinction between 
clients and servers, since most entities act as both

 Advantages:
 Service scales, staying the same or improving as the 

number of users goes up
 Disadvantages:
 Security: A corrupted node can be hard to detect
 Administration: Propagating changes can be difficult
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 Layered architectures divide systems into a strict 
hierarchy of components

 Each layer can only communicate with the layer 
above and below it

 Advantages:
 As long as a new layer knows how to talk to the layer 

above and below, it can be swapped out with an old layer
 New layers can be added on top

 Disadvantages:
 It's hard to divide systems into hierarchical layers
 It can be inefficient to prevent one layer from talking 

directly to one much lower or higher
 Some services at each layer are redundant
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 Pipe-and-filter architectures send data in one direction through a series of components
 The output of one stage is the input of the next
 Each stage transforms the data in some way
 Examples:
 Linux command-line piping

 Java stream filtering
 Stages of a compiler

 Advantages:
 Good for serial data processing
 Modular components that have the same input and output can be reused in different sequences

 Disadvantage: No error recovery if something breaks in the middle

sort foo.txt | grep -i error | head -n 10 > out.txt



 Event-driven architectures react to events, changes in the state 
of the system
 GUIs are a common example of event-driven architectures

 Event generator create events
 Event channels send the event to the appropriate event handlers

 Advantages:
 Adding new event generators and handlers allows for an extensible 

system
 Good for reactive systems

 Disadvantage: Timing can be complicated, especially for shared 
resources
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 We talk about the previous architectures because they're models that 
have been successful in the past

 Most real systems are a mix of different architectures
 The whole system could be one architecture, but its components have their own
 A system could be mostly one architecture but break a couple of rules
 There can be different ways of looking at the same system

 Example: OS kernel
 Event-driven because it has interrupt handlers to respond to signals from the 

hardware
 Client/server because applications that make system calls are making requests
 Layered because file systems and networking operate with layers from the 

generic operation down to the requirements of particular hardware





 States are different, meaningful configurations that a system can 
be in

 They show up all over computer science
 Deterministic finite automata (DFA) are a simple model of computation 

equivalent to regular expressions
 State machines are useful for parsing
 State machines can express different states that a system (like a 

microwave or a enemy in a video game) can be in
 Transitions are changes from one state to another
 Events trigger transitions which then have effects, visible 

behavior



 As discussed in COMP 3100, UML 
standardizes state models as a way 
to visualize states and transitions
 States are shown as rounded rectangles
 A solid circle shows the initial state
 A solid circle in a circle shows the final 

state
 Transitions are shown as labeled arrows
 Effects (if any) are written after a slash 

after the transition label



 When constructing state machines from some other 
representation, it's possible to generate a large number of 
states

 For example, a different state for every configuration of bits in 
a 32-bit integer would mean 232 ≈ 4 billion different states

 To be useful as models, there needs to be a reasonable 
number of states
 Different states can be grouped together based on what's 

meaningful for a given problem



 State machines are often 
used to recognize strings as 
being legal or illegal

 Consider a state machine 
from Project 1 designed to 
recognize integer values 
(formatted in either decimal 
or octal)

 In addition to recognizing 
integers as legal or illegal, 
the machine builds the 
integer based on the effects



 As COMP 3200 covers, regular expressions and finite state 
machines are equivalent
 For every regular expression, there's an equivalent FSM
 For every FSM, there's an equivalent regular expression

 Example:
 Regular expression: 1 0 1*
 FSM:



 There are algorithms to convert between regular expressions and 
state machines

 Most regular expression libraries build a state machine as a way to 
see if strings match the regular expression

 One way to implement state machines is with a 2D array
 One row for every state
 One column for every event, saying which state a given state will 

transition to
 If there are effects, a second 2D array can show which effects 

happen on those transitions
 If an action happens whenever a state is entered, a 1D array can 

hold that information



 The state model on the left has a transition table on the right 

Events

States Connect Suspend Ready Finish Cancel
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 Two enums are used to list the states and the events
 A 2D array stores the transitions

typedef enum { CONN, BUFF, PLAY, CLOS, NST } ms_t;
typedef enum { Connect, Suspend, Ready, Finish, Cancel } event_t;
#define NUM_STATES (NST+1)
#define NUM_EVENTS (Cancel+1)
static ms_t const _transition[NUM_STATES][NUM_EVENTS] =
{

// Connect Suspend Ready   Finish Cancel
{  BUFF,   NST,    NST,    NST,   NST  }, // Connecting
{  NST,    NST,    PLAY,   NST,   CLOS }, // Buffering
{  NST,    BUFF,   NST,    CLOS,  NST  }, // Playing
{  NST,    NST,    NST,    NST,   NST  }  // Closing

};



 A table filled with function pointers can be used for effects

static action_t const _effect[NUM_STATES][NUM_EVENTS] = {
// Connect     Suspend     Ready   Finish Cancel
{  start_load, NULL,       NULL,   NULL,  NULL }, // Connecting
{  NULL,       NULL,       resume, NULL,  NULL }, // Buffering
{  NULL,       pause_play, NULL,   NULL,  NULL }, // Playing
{  NULL,       NULL,       NULL,   NULL,  NULL }  // Closing

};





 State models don't have any timing or 
sequence information

 Sequence models show the order in which 
messages are sent from one entity to 
another
 Solid arrows show synchronous messages
 Open arrows show asynchronous messages
 Dotted lines show responses
 Messages that end in circles are lost

 The order of messages in sequence models 
is logical, not scaled by time





 Processes
 Multiprogramming
 Kernel



 No class on Monday
 Work on Assignment 1
 Due next Friday by midnight!

 Look over Project 1
 Read sections 2.1, 2.2, and 2.3
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