
Week 1 - Friday

 What did we talk about last time?
 Fixed width types
 Systems
 Course themes
 System architectures

 System architectures are models of systems that describe:
 Relationships between entities in the system
 Ways the entities communicate

 Different architectural styles have pros and cons
 Using a certain style can have big impacts on system performance
 Common styles:
 Client/server
 Peer-to-peer (P2P)
 Layered
 Pipe-and-filter
 Event-driven
 Hybrid

 This book considers client/server architectures
from the perspective of a many clients
connecting to a single server
 If you recall, the Software Engineering book

describes client/server as a system with many
servers, each of which offer a single service

 How does a client know how to reach the server?
 Uniform resource identifier (URI) is a common way:

www.goats.net/image.jpg
 Client/server architectures depend on protocols

to define how clients can request services and
understand the response

Server

Client 1

Client 2

Client 3Client 4

Client 5

http://www.goats.net/image.jpg

ADVANTAGES

 Updates are simple, because only the
server needs to be updated

 Only the server needs to be checked
for security problems or data
corruption

DISADVANTAGES

 Single point of failure

 To reduce the single point of failure problem, it's common to have multiple servers
that offer the same services or files

 To work, these servers must coordinate with each other when one is updated

 If more and more servers are used, the architecture
begins to look like a P2P architecture
 BitTorrent
 DNS

 In P2P, there is usually no distinction between
clients and servers, since most entities act as both

 Advantages:
 Service scales, staying the same or improving as the

number of users goes up
 Disadvantages:
 Security: A corrupted node can be hard to detect
 Administration: Propagating changes can be difficult

Node 1

Node 2

Node 3Node 4

Node 5

 Layered architectures divide systems into a strict
hierarchy of components

 Each layer can only communicate with the layer
above and below it

 Advantages:
 As long as a new layer knows how to talk to the layer

above and below, it can be swapped out with an old layer
 New layers can be added on top

 Disadvantages:
 It's hard to divide systems into hierarchical layers
 It can be inefficient to prevent one layer from talking

directly to one much lower or higher
 Some services at each layer are redundant

Persistence Layer

Services Layer

Business Layer

Presentation Layer

 Pipe-and-filter architectures send data in one direction through a series of components
 The output of one stage is the input of the next
 Each stage transforms the data in some way
 Examples:
 Linux command-line piping

 Java stream filtering
 Stages of a compiler

 Advantages:
 Good for serial data processing
 Modular components that have the same input and output can be reused in different sequences

 Disadvantage: No error recovery if something breaks in the middle

sort foo.txt | grep -i error | head -n 10 > out.txt

 Event-driven architectures react to events, changes in the state
of the system
 GUIs are a common example of event-driven architectures

 Event generator create events
 Event channels send the event to the appropriate event handlers

 Advantages:
 Adding new event generators and handlers allows for an extensible

system
 Good for reactive systems

 Disadvantage: Timing can be complicated, especially for shared
resources

Event
Generator

Event
Channel

Event
Processing

Event
Handler 1

Event
Handler 2

Event
Handler 3

 We talk about the previous architectures because they're models that
have been successful in the past

 Most real systems are a mix of different architectures
 The whole system could be one architecture, but its components have their own
 A system could be mostly one architecture but break a couple of rules
 There can be different ways of looking at the same system

 Example: OS kernel
 Event-driven because it has interrupt handlers to respond to signals from the

hardware
 Client/server because applications that make system calls are making requests
 Layered because file systems and networking operate with layers from the

generic operation down to the requirements of particular hardware

 States are different, meaningful configurations that a system can
be in

 They show up all over computer science
 Deterministic finite automata (DFA) are a simple model of computation

equivalent to regular expressions
 State machines are useful for parsing
 State machines can express different states that a system (like a

microwave or a enemy in a video game) can be in
 Transitions are changes from one state to another
 Events trigger transitions which then have effects, visible

behavior

 As discussed in COMP 3100, UML
standardizes state models as a way
to visualize states and transitions
 States are shown as rounded rectangles
 A solid circle shows the initial state
 A solid circle in a circle shows the final

state
 Transitions are shown as labeled arrows
 Effects (if any) are written after a slash

after the transition label

 When constructing state machines from some other
representation, it's possible to generate a large number of
states

 For example, a different state for every configuration of bits in
a 32-bit integer would mean 232 ≈ 4 billion different states

 To be useful as models, there needs to be a reasonable
number of states
 Different states can be grouped together based on what's

meaningful for a given problem

 State machines are often
used to recognize strings as
being legal or illegal

 Consider a state machine
from Project 1 designed to
recognize integer values
(formatted in either decimal
or octal)

 In addition to recognizing
integers as legal or illegal,
the machine builds the
integer based on the effects

 As COMP 3200 covers, regular expressions and finite state
machines are equivalent
 For every regular expression, there's an equivalent FSM
 For every FSM, there's an equivalent regular expression

 Example:
 Regular expression: 1 0 1*
 FSM:

 There are algorithms to convert between regular expressions and
state machines

 Most regular expression libraries build a state machine as a way to
see if strings match the regular expression

 One way to implement state machines is with a 2D array
 One row for every state
 One column for every event, saying which state a given state will

transition to
 If there are effects, a second 2D array can show which effects

happen on those transitions
 If an action happens whenever a state is entered, a 1D array can

hold that information

 The state model on the left has a transition table on the right

Events

States Connect Suspend Ready Finish Cancel

Connecting Buffering

Buffering Playing Closing

Playing Buffering Closing

Closing

 Two enums are used to list the states and the events
 A 2D array stores the transitions

typedef enum { CONN, BUFF, PLAY, CLOS, NST } ms_t;
typedef enum { Connect, Suspend, Ready, Finish, Cancel } event_t;
#define NUM_STATES (NST+1)
#define NUM_EVENTS (Cancel+1)
static ms_t const _transition[NUM_STATES][NUM_EVENTS] =
{

// Connect Suspend Ready Finish Cancel
{ BUFF, NST, NST, NST, NST }, // Connecting
{ NST, NST, PLAY, NST, CLOS }, // Buffering
{ NST, BUFF, NST, CLOS, NST }, // Playing
{ NST, NST, NST, NST, NST } // Closing

};

 A table filled with function pointers can be used for effects

static action_t const _effect[NUM_STATES][NUM_EVENTS] = {
// Connect Suspend Ready Finish Cancel
{ start_load, NULL, NULL, NULL, NULL }, // Connecting
{ NULL, NULL, resume, NULL, NULL }, // Buffering
{ NULL, pause_play, NULL, NULL, NULL }, // Playing
{ NULL, NULL, NULL, NULL, NULL } // Closing

};

 State models don't have any timing or
sequence information

 Sequence models show the order in which
messages are sent from one entity to
another
 Solid arrows show synchronous messages
 Open arrows show asynchronous messages
 Dotted lines show responses
 Messages that end in circles are lost

 The order of messages in sequence models
is logical, not scaled by time

 Processes
 Multiprogramming
 Kernel

 No class on Monday
 Work on Assignment 1
 Due next Friday by midnight!

 Look over Project 1
 Read sections 2.1, 2.2, and 2.3

	COMP 3400
	Last time
	Questions?
	Assignment 1
	Project 1
	System Architectures
	System architectures
	Client/server architectures
	Client/server advantages and disadvantages
	Peer-to-peer (P2P) architectures
	Layered architectures
	Pipe-and-filter architectures
	Event-driven architectures
	Hybrid architectures
	State Machines
	States
	UML state models
	State space explosion
	State machines as recognizers
	Regular expressions and state machines
	Implementing state machines
	Example transition table
	Example table in code
	Effects
	Sequence Models
	Sequence models
	Upcoming
	Next time…
	Reminders

