
Week 1 - Friday

 What did we talk about last time?
 Fixed width types
 Systems
 Course themes
 System architectures

 System architectures are models of systems that describe:
 Relationships between entities in the system
 Ways the entities communicate

 Different architectural styles have pros and cons
 Using a certain style can have big impacts on system performance
 Common styles:
 Client/server
 Peer-to-peer (P2P)
 Layered
 Pipe-and-filter
 Event-driven
 Hybrid

 This book considers client/server architectures
from the perspective of a many clients
connecting to a single server
 If you recall, the Software Engineering book

describes client/server as a system with many
servers, each of which offer a single service

 How does a client know how to reach the server?
 Uniform resource identifier (URI) is a common way:

www.goats.net/image.jpg
 Client/server architectures depend on protocols

to define how clients can request services and
understand the response

Server

Client 1

Client 2

Client 3Client 4

Client 5

http://www.goats.net/image.jpg

ADVANTAGES

 Updates are simple, because only the
server needs to be updated

 Only the server needs to be checked
for security problems or data
corruption

DISADVANTAGES

 Single point of failure

 To reduce the single point of failure problem, it's common to have multiple servers
that offer the same services or files

 To work, these servers must coordinate with each other when one is updated

 If more and more servers are used, the architecture
begins to look like a P2P architecture
 BitTorrent
 DNS

 In P2P, there is usually no distinction between
clients and servers, since most entities act as both

 Advantages:
 Service scales, staying the same or improving as the

number of users goes up
 Disadvantages:
 Security: A corrupted node can be hard to detect
 Administration: Propagating changes can be difficult

Node 1

Node 2

Node 3Node 4

Node 5

 Layered architectures divide systems into a strict
hierarchy of components

 Each layer can only communicate with the layer
above and below it

 Advantages:
 As long as a new layer knows how to talk to the layer

above and below, it can be swapped out with an old layer
 New layers can be added on top

 Disadvantages:
 It's hard to divide systems into hierarchical layers
 It can be inefficient to prevent one layer from talking

directly to one much lower or higher
 Some services at each layer are redundant

Persistence Layer

Services Layer

Business Layer

Presentation Layer

 Pipe-and-filter architectures send data in one direction through a series of components
 The output of one stage is the input of the next
 Each stage transforms the data in some way
 Examples:
 Linux command-line piping

 Java stream filtering
 Stages of a compiler

 Advantages:
 Good for serial data processing
 Modular components that have the same input and output can be reused in different sequences

 Disadvantage: No error recovery if something breaks in the middle

sort foo.txt | grep -i error | head -n 10 > out.txt

 Event-driven architectures react to events, changes in the state
of the system
 GUIs are a common example of event-driven architectures

 Event generator create events
 Event channels send the event to the appropriate event handlers

 Advantages:
 Adding new event generators and handlers allows for an extensible

system
 Good for reactive systems

 Disadvantage: Timing can be complicated, especially for shared
resources

Event
Generator

Event
Channel

Event
Processing

Event
Handler 1

Event
Handler 2

Event
Handler 3

 We talk about the previous architectures because they're models that
have been successful in the past

 Most real systems are a mix of different architectures
 The whole system could be one architecture, but its components have their own
 A system could be mostly one architecture but break a couple of rules
 There can be different ways of looking at the same system

 Example: OS kernel
 Event-driven because it has interrupt handlers to respond to signals from the

hardware
 Client/server because applications that make system calls are making requests
 Layered because file systems and networking operate with layers from the

generic operation down to the requirements of particular hardware

 States are different, meaningful configurations that a system can
be in

 They show up all over computer science
 Deterministic finite automata (DFA) are a simple model of computation

equivalent to regular expressions
 State machines are useful for parsing
 State machines can express different states that a system (like a

microwave or a enemy in a video game) can be in
 Transitions are changes from one state to another
 Events trigger transitions which then have effects, visible

behavior

 As discussed in COMP 3100, UML
standardizes state models as a way
to visualize states and transitions
 States are shown as rounded rectangles
 A solid circle shows the initial state
 A solid circle in a circle shows the final

state
 Transitions are shown as labeled arrows
 Effects (if any) are written after a slash

after the transition label

 When constructing state machines from some other
representation, it's possible to generate a large number of
states

 For example, a different state for every configuration of bits in
a 32-bit integer would mean 232 ≈ 4 billion different states

 To be useful as models, there needs to be a reasonable
number of states
 Different states can be grouped together based on what's

meaningful for a given problem

 State machines are often
used to recognize strings as
being legal or illegal

 Consider a state machine
from Project 1 designed to
recognize integer values
(formatted in either decimal
or octal)

 In addition to recognizing
integers as legal or illegal,
the machine builds the
integer based on the effects

 As COMP 3200 covers, regular expressions and finite state
machines are equivalent
 For every regular expression, there's an equivalent FSM
 For every FSM, there's an equivalent regular expression

 Example:
 Regular expression: 1 0 1*
 FSM:

 There are algorithms to convert between regular expressions and
state machines

 Most regular expression libraries build a state machine as a way to
see if strings match the regular expression

 One way to implement state machines is with a 2D array
 One row for every state
 One column for every event, saying which state a given state will

transition to
 If there are effects, a second 2D array can show which effects

happen on those transitions
 If an action happens whenever a state is entered, a 1D array can

hold that information

 The state model on the left has a transition table on the right

Events

States Connect Suspend Ready Finish Cancel

Connecting Buffering

Buffering Playing Closing

Playing Buffering Closing

Closing

 Two enums are used to list the states and the events
 A 2D array stores the transitions

typedef enum { CONN, BUFF, PLAY, CLOS, NST } ms_t;
typedef enum { Connect, Suspend, Ready, Finish, Cancel } event_t;
#define NUM_STATES (NST+1)
#define NUM_EVENTS (Cancel+1)
static ms_t const _transition[NUM_STATES][NUM_EVENTS] =
{

// Connect Suspend Ready Finish Cancel
{ BUFF, NST, NST, NST, NST }, // Connecting
{ NST, NST, PLAY, NST, CLOS }, // Buffering
{ NST, BUFF, NST, CLOS, NST }, // Playing
{ NST, NST, NST, NST, NST } // Closing

};

 A table filled with function pointers can be used for effects

static action_t const _effect[NUM_STATES][NUM_EVENTS] = {
// Connect Suspend Ready Finish Cancel
{ start_load, NULL, NULL, NULL, NULL }, // Connecting
{ NULL, NULL, resume, NULL, NULL }, // Buffering
{ NULL, pause_play, NULL, NULL, NULL }, // Playing
{ NULL, NULL, NULL, NULL, NULL } // Closing

};

 State models don't have any timing or
sequence information

 Sequence models show the order in which
messages are sent from one entity to
another
 Solid arrows show synchronous messages
 Open arrows show asynchronous messages
 Dotted lines show responses
 Messages that end in circles are lost

 The order of messages in sequence models
is logical, not scaled by time

 Processes
 Multiprogramming
 Kernel

 No class on Monday
 Work on Assignment 1
 Due next Friday by midnight!

 Look over Project 1
 Read sections 2.1, 2.2, and 2.3

	COMP 3400
	Last time
	Questions?
	Assignment 1
	Project 1
	System Architectures
	System architectures
	Client/server architectures
	Client/server advantages and disadvantages
	Peer-to-peer (P2P) architectures
	Layered architectures
	Pipe-and-filter architectures
	Event-driven architectures
	Hybrid architectures
	State Machines
	States
	UML state models
	State space explosion
	State machines as recognizers
	Regular expressions and state machines
	Implementing state machines
	Example transition table
	Example table in code
	Effects
	Sequence Models
	Sequence models
	Upcoming
	Next time…
	Reminders

